M1.(a) salivary gland
(b) liver
(c) any four from:

- merozoites released (from liver) and enter the red blood cells
- (some of these) turn into schizonts
- (which) burst the red blood cells
- releasing (more) merozoites
- coincides with fever attacks.
points credited must be in correct sequence
(d) (i) three bases code for one amino acid
middle code of CTC is now CAC / T changed to A
so will be a different amino acid (in the chain)
(and so chain / protein will have a different shape) due to a different sequence of amino acids
(ii) correct parental genotypes (both Aa)
allow ecf for $2^{\text {nd }}$ and $4^{\text {th }}$ marking points
or correct gametes (A+a $\mathbf{A + a}$)
allow alternative symbols if defined
correct derivation of offspring genotypes from gametes
aa identified (homozygous for) SCA
0.25
allow 25% or 1 in 4 or 1:3 or $1 / 4$
(iii) (Aa) less likely to get malaria (than homozygous dominant / AA) allow resistance or protection if correctly qualified eg some protection do not accept 'immune'

M2.(a) (i) in the chromosome(s)
ignore genes / alleles
in the nucleus
allow nuclei
allow mitochondria
(ii) the DNA / chromosomes / genes are replicated / copied / multiplied / doubled / duplicated
allow DNA is cloned
ignore same DNA / chromosomes / genes if unqualified
(b) (i) 1 / one
(ii) $2 /$ two
(c) \mathbf{B}

M3.(a) (different / alternative) forms of a gene
do not accept types of genes
(b) DNA isolated from embryo
(fluorescent) probe mixed with embryo DNA
probe (then) binds with embryo DNA
(UV light) to show alleles / gene for disorder
(c) genotypes of parents and gametes correct (Man D and d, Wife d and d)
allow half-size genetic diagram with only one \boldsymbol{d} from wife
offspring genotypes correct ($1 / 2=$ Dd and $1 / 2=\mathbf{d d}$)
allow ecf if parental genotypes are wrong
offspring phenotypes correctly assigned to genotypes
(d) genotypes of parents and gametes correct (\mathbf{N} and \mathbf{n}) allow ecf if parental genotypes are wrong
offspring genotypes correct ($\mathbf{N N}, 2 \times \mathbf{N n}$, and $\mathbf{n n}$)
offspring phenotypes correctly assigned to genotypes;
correct probability $=0.25 / 1 / 4 / 25 \% / 1$ in $4 / 1: 3$, only; do not allow '3:1■ / 1:4
(ii) base(s)

Accept all four correct names of bases

ignore nucleotides and refs to organic / N-containing

(iii) 4
(iv) codes for sequence / order of amino acids ignore references to characteristics
codes for a (specific) protein / enzyme
or
the sequence / order of three bases / compounds / letters
codes for a specific amino acid
or
the sequence / order of 3 bases / compounds / letters
codes for the order / sequence of amino acids
(b) (i) DNA
circular / a ring or a vector / described
(ii) kills any cells not having kan' gene / so only cells with kan' gene survive hence surviving cells will also contain Bt gene / plasmid
(iii) cells divide by mitosis ignore ref to asexual reproduction correct spelling only
genetic information is copied / each cell receives a copy of (all) the gene(s) / all cells produced are genetically identical / form a clone
(iv) any two from:

- gene may be passed to pathogenic bacteria
- cannot then kill these pathogens with kanamycin or
cannot treat disease with kanamycin
- may need to develop new antibiotics
- gene may get into other organisms
- outcome unpredictable

